Skip to main content

Cohere

This notebook covers how to get started with Cohere chat models.

Head to the API reference for detailed documentation of all attributes and methods.

Setup​

The integration lives in the langchain-cohere package. We can install these with:

pip install -U langchain-cohere

We'll also need to get a Cohere API key and set the COHERE_API_KEY environment variable:

import getpass
import os

os.environ["COHERE_API_KEY"] = getpass.getpass()

It's also helpful (but not needed) to set up LangSmith for best-in-class observability

# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()

Usage​

ChatCohere supports all ChatModel functionality:

from langchain_cohere import ChatCohere
from langchain_core.messages import HumanMessage

API Reference:

chat = ChatCohere(model="command")
messages = [HumanMessage(content="1"), HumanMessage(content="2 3")]
chat.invoke(messages)
AIMessage(content='4 && 5 \n6 || 7 \n\nWould you like to play a game of odds and evens?', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '2076b614-52b3-4082-a259-cc92cd3d9fea', 'token_count': {'prompt_tokens': 68, 'response_tokens': 23, 'total_tokens': 91, 'billed_tokens': 77}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '2076b614-52b3-4082-a259-cc92cd3d9fea', 'token_count': {'prompt_tokens': 68, 'response_tokens': 23, 'total_tokens': 91, 'billed_tokens': 77}}, id='run-3475e0c8-c89b-4937-9300-e07d652455e1-0')
await chat.ainvoke(messages)
AIMessage(content='4 && 5', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': 'f0708a92-f874-46ee-9b93-334d616ad92e', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': 'f0708a92-f874-46ee-9b93-334d616ad92e', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, id='run-1635e63e-2994-4e7f-986e-152ddfc95777-0')
for chunk in chat.stream(messages):
print(chunk.content, end="", flush=True)
4 && 5
chat.batch([messages])
[AIMessage(content='4 && 5', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6770ca86-f6c3-4ba3-a285-c4772160612f', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6770ca86-f6c3-4ba3-a285-c4772160612f', 'token_count': {'prompt_tokens': 68, 'response_tokens': 3, 'total_tokens': 71, 'billed_tokens': 57}}, id='run-8d6fade2-1b39-4e31-ab23-4be622dd0027-0')]

Chaining​

You can also easily combine with a prompt template for easy structuring of user input. We can do this using LCEL

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_template("Tell me a joke about {topic}")
chain = prompt | chat

API Reference:

chain.invoke({"topic": "bears"})
AIMessage(content='What color socks do bears wear?\n\nThey don’t wear socks, they have bear feet. \n\nHope you laughed! If not, maybe this will help: laughter is the best medicine, and a good sense of humor is infectious!', additional_kwargs={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6edccf44-9bc8-4139-b30e-13b368f3563c', 'token_count': {'prompt_tokens': 68, 'response_tokens': 51, 'total_tokens': 119, 'billed_tokens': 108}}, response_metadata={'documents': None, 'citations': None, 'search_results': None, 'search_queries': None, 'is_search_required': None, 'generation_id': '6edccf44-9bc8-4139-b30e-13b368f3563c', 'token_count': {'prompt_tokens': 68, 'response_tokens': 51, 'total_tokens': 119, 'billed_tokens': 108}}, id='run-ef7f9789-0d4d-43bf-a4f7-f2a0e27a5320-0')

Was this page helpful?


You can leave detailed feedback on GitHub.